Vanderbilt Kennedy Center Science Day
Tuesday, January 23, 2018

11:30 a.m. Registration and Poster Hanging Opens

12:00 p.m. Lunch buffet available

1:00 p.m. Welcome and Opening Remarks (Board of Trust Room)
- Ron Emeson, Ph.D., Science Day Chair
- Jeffrey R. Balser, M.D., Ph.D., President & CEO, Vanderbilt University Medical Center; Dean, Vanderbilt University School of Medicine
- Jeff Neul, M.D., Ph.D., Vanderbilt Kennedy Center Director

1:15 p.m. VKC Data Blitz (Board of Trust Room)
David Zald, Ph.D., Introduction of Science Day Poster Abstract Competition Winners & Announcement of Warren Lambert Memorial Awards
Data Blitz Presenters:
- Kirill Zavalin (Cellular/Molecular Neuroscience, Graduate Student): “Excitatory to Inhibitory Transition in GABAergic Currents Guides Circuit Formation of Cortical Interneurons”
- Allison Whitten (Systems Neuroscience, Graduate Student): “Investigating Neural Bias to Speech Using Auditory Event-Related Potentials in Children”
- Jena McDaniel (Clinical/Behavioral/Intervention Research, Graduate Student): “Can an Automated Measure – Child Reciprocal Vocal Contingency – Predict Language Outcomes for Young Children with Autism Spectrum Disorder?”
- Anna Pfalzer (Cellular/Molecular Neuroscience, Postdoctoral Fellow): “Alterations in Arginine and Cholesterol Metabolism are Rescued with Manganese Exposure in a Mouse Model of Huntington’s Disease”
- Branden Stansley (Systems Neuroscience, Postdoctoral Fellow): “Meta-Modulation of mGlu5 by mGlu3 during Hippocampal Dependent Synaptic Plasticity and Behavior”

2:00 p.m. Introduction of Keynote Speaker
Ron Emeson, Ph.D., Science Day Chair

2:05 p.m. Keynote Address (Board of Trust Room)
Technology as a Tool for Bringing Services and Research to Individuals with Developmental Disabilities, Families, and Communities
Leonard Abbeduto, Ph.D., Tsakopoulos-Vismara Endowed Chair of Psychiatry and Behavioral Sciences; Director, MIND Institute, University of California Davis

3:00 p.m. Poster Session 1 (Ballroom)—Reception Buffet is open

3:45 p.m. Poster Session 2 (Ballroom)

4:30 p.m. Appreciation (Ballroom)
- Planning committee—Science Day quiz & prizes
- Jeff Neul, M.D., Ph.D., VKC Director

4:45 p.m. Posters Removed
Science Day Goals

- To promote “centeredness” by providing a scientific forum for VKC faculty, their students, postdoctoral fellows, and trainees;
- To promote interdisciplinary research collaboration; and
- To provide faculty and trainees with an opportunity to present significant research findings and evidence-based service practices

Vanderbilt Kennedy Center for Research on Human Development

Who We Are and Who We Serve

The Vanderbilt Kennedy Center has been transforming the lives of children and adults with disabilities through innovative research, training, and services for 53 years. Our mission is to facilitate discoveries and best practices that make positive differences in the lives of persons with developmental disabilities and their families. We support and apply scientific research to bring better services and training to our communities.

We generate new knowledge and train future researchers as a national Eunice Kennedy Shriver Intellectual and Developmental Disabilities Research Center (IDDRC), one of 14 supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Over 220 faculty members in 26 departments in all 10 Vanderbilt schools and colleges conduct research and engage in clinical activities that advance the diagnosis, prevention, treatment, and amelioration of intellectual and developmental disabilities. They address autism spectrum disorders, learning disabilities, genetic syndromes, and acquired or general intellectual and developmental disabilities. They use a broad range of methodologies including identifying basic mechanisms, treatment targets, and aberrant developmental processes in model systems; measuring cognitive, social, emotional, and neural phenotypes in IDD; and conducting treatment and intervention studies.

Vanderbilt faculty affiliated with the Vanderbilt Kennedy Center can access a wide range of research support services organized into five cores, listed below. For more details on services, consult the Research section of the VKC website (vkc.mc.vanderbilt.edu/vkc/iddrc/cores/).

Administrative Services Core A

Jeff Neul, M.D., Ph.D., Director
Laurie Cutting, Ph.D., Associate Director
Tim Stafford, MMHC, Operations Director
Jan Rosemergy, Ph.D., Deputy Director
- Governance and oversight
- Fiscal and resource management
- Space and facilities
- Technical services—IT and graphics
- Training, education, and communications
Clinical Translational Core B
Zachary Warren, Ph.D., Director
Paul Harris, Ph.D., Associate Director
- Recruitment services
- Research registries, epidemiological database services, and database mining
- Neurobehavioral phenotyping and outcomes
- Human study and clinical trial services

Translational Neuroimaging Core C
Laurie Cutting, Ph.D., Director
Sasha Key, Ph.D., Associate Director
- Design of experiments, including selecting appropriate functional MRI tasks and other modalities of MR imaging or EEG/ERP/eye tracking acquisition parameters
- Implementation of MR imaging and psychophysiological data collections with special populations (individuals with various developmental disabilities, especially children and infants)
- Management and analysis of MR and EEG/ERP/eye tracking data

Neuroscience Core D
Ron Emeson, Ph.D., Director
Fiona Harrison, Ph.D., Associate Director
- Mouse behavioral phenotyping
- Neurochemistry
- Molecular neurobiology and genomics
- Scientific instrumentation

Biostatistics & Bioinformatics Core E
Hakmook Kang, Ph.D., Director
Julie Lounds Taylor, Ph.D., Associate Director
- Biostatistics consultation and education
- Platform development, complex modeling
- IDD database development leveraging BioVU/Synthetic Derivative

IDDRC U54 Research Project: Sensory and multisensory contributions to autism
Mark Wallace, Ph.D.

The Vanderbilt Kennedy Center conducts training, provides services and technical assistance, conducts research, and disseminates information as a University Center for Excellence in Developmental Disabilities (UCEDD) supported by the Administration on Intellectual and Developmental Disabilities. Projects and activities are focused on four areas of emphasis:
- Education and early intervention,
- Employment,
- Health and mental health,
- Quality of life.
The Vanderbilt Consortium Leadership Education in Neurodevelopmental and Related Disabilities (LEND) Training Program prepares graduate and postgraduate students in a variety of health-related fields, including audiology, deaf education, family/parent resources, nursing, nutrition, occupational therapy, pediatric dentistry, pediatrics, pharmacy, physical therapy, psychiatry, psychology, religion, social work, special education, and speech-language pathology. Supported by the Maternal and Child Health Bureau, Health Resources and Services Administration, the program stresses interdisciplinary, family-centered, culturally competent, community-coordinated services for infants, children, and adolescents with neurodevelopmental and related disabilities. LEND collaborates with Belmont University, East Tennessee State University, Meharry Medical College, Milligan College, Tennessee State University, University of Tennessee Nashville, as well as affiliates from Family Voices of Tennessee.

The VKC Treatment and Research Institute for Autism Spectrum Disorders (TRIAD) works to improve ASD assessment and treatment services for individuals with ASD and their families, while advancing knowledge and training. TRIAD programs address community needs for cutting-edge information, high-quality support, and innovative interventions for children with ASD. TRIAD-directed research programs and partnerships examine the causes and treatment of ASD.

One in 5 children has a developmental disability. Examples include autism, intellectual disability, genetic syndromes, brain or spinal cord injury, and cerebral palsy. The developmental concerns of Center researchers and clinicians are broad, including sensory impairments, learning disabilities, behavior disorders, depression, schizophrenia, and chronic health conditions. In understanding and treating disabilities, researchers, clinicians, and educators consider individual and family strengths and resources as well as challenges across the lifespan.

Taking Part in Research
Babies, children, and adults, with and without disabilities, are invited to be part of studies. We provide two ways to find out about studies.

- **StudyFinder**
 (615) 322-8238
 A website listing research projects of VKC Investigators and Members involving children and adults, with or without disabilities; project may provide treatment or advance knowledge.
 vkc.mc.vanderbilt.edu/studyfinder

- **Research Match**
 Includes an Intellectual Disabilities Sub-Registry. Families may sign up and get matched with research. Researchers can list studies.
 researchmatch.org

Vanderbilt Kennedy Center Contacts
Toll-Free & VKC UCEDD (866) 936-VUKC [8852]
General Information (615) 322-8240
Tennessee Disability Pathfinder (615) 322-8529, (800) 640-4636
Vanderbilt Autism Resource Line (615) 322-7565, (877) 273-8862
Website vkc.mc.vanderbilt.edu
In Grateful Appreciation

Vanderbilt Kennedy Center Science Day Faculty Planning Committee
- Ron Emeson, Ph.D. (Committee Chair, Undergraduate Chair), Joel G. Hardman Professor of Pharmacology; Professor of Biochemistry, Molecular Physiology & Biophysics, and Psychiatry & Behavioral Sciences
- David Zald, Ph.D. (Systems Neuroscience), Cornelius Vanderbilt Chair and Professor of Psychology and Psychiatry & Behavioral Sciences
- Aaron Bowman, Ph.D. (Clinical/Molecular Neuroscience), Associate Professor of Pediatrics, Biochemistry, and Neurology
- Melanie Schuele, Ph.D. (Clinical/Behavioral/Intervention Research), Associate Professor of Hearing & Speech Sciences

Vanderbilt Kennedy Center Staff
- Science Day planning and coordination: Jan Rosemergy, Jon Tapp, Elizabeth Turner
- Support: Laurie Fleming, Sue King, Courtney Taylor

Vanderbilt Kennedy Center Travel Awards

Attention: Poster Presenters
Thank you for taking part in Vanderbilt Kennedy Center Science Day! All poster presenters will be appointed as a Vanderbilt Kennedy Center Affiliate. All Affiliates may compete for VKC Travel Awards.

Vanderbilt Kennedy Center Travel Awards—Eligibility and Application Process
VKC Travel Awards supplement other funding sources. Applications (letter of request) will be considered for travel to present at scientific conferences or meetings beginning Jan. 23, 2018. A Travel Award will not exceed $250, and an Affiliate is eligible for a single Award between annual Science Days. Travel Awards are available on a first-come, first-served basis until funds set aside for this purpose are fully committed.

Eligibility
Graduate students and postdoctoral fellows:
- Who are engaged in research with a VKC Investigator or Member
- Who are VKC Affiliates (i.e., who presented a poster at Vanderbilt Kennedy Center Science Day, Jan. 23, 2018)
- Who will use the funds to travel to a research conference at which the Affiliate is making a presentation

Process
- The VKC Affiliate submits a letter of request, co-signed by the VKC Investigator or Member with whom the trainee is conducting research. The letter should describe how the travel award would be used (conference title, location, dates, presentation title), and how the trainee’s research interests and research training would be served.
- Letter of request should be submitted to Jan Rosemergy, VKC Deputy Director, for review and decision. (jan.rosemergy@vanderbilt.edu; (615) 322-8238; 1207 17th Ave. S., Suite 202, Nashville 37212).
• VKC Communications will notify Affiliate of decision. If a Travel Award is made, instructions for payment will be included in award letter.

Attention: Students Attending Science Day

Students often look for positions in research labs or programs, and in turn, researchers often are looking for interested students to become involved in their research. We hope you will use VKC Science Day as an opportunity to explore the range of research in many disciplines, to talk with trainees and faculty engaged in research, and to identify labs or research programs you may want to contact in the future.

Poster Abstracts

Poster abstracts are available on the VKC website at vkc.mc.vanderbilt.edu/vkc/scienceday/.

Lab Index by Poster Number

B
Barton, 59
Blackford, 4
Bodfish, 51, 69, 74, 88, 37
Booth, J., 87
Bowman 58, 91

C
Camarata, 79
Carter, B., 19, 84
Carter, E., 35
Cascio, 15, 95
Colbran, 42, 57
Conn, 31, 36, 40, 78
Corbett, 50
Cutting, 1, 52, 64

D
Deutch, 41, 49
Duff, 9

E
Emeson, 27, 30, 71
Ess, 77

F
Fuchs, D., 33, 56, 86

G
Gilmer, 16, 76
Gotham, 23

H
Harrison, 14
Hine, 55
Hodapp, 7

J
Jones, 61, 73
Juárez, 47

K
Kaas, 68
Kaiser, 11, 20, 24, 62
Kang, J., 6
Knapik, 39
Knight, 90

L
Lagrange, 92
Ledford, 93

M
Malow, 46
McMillan, 70

N
Needham, 89
Niswender, 18, 45, 48, 85

P
Park, 8, 26, 28, 29, 83
Price, G., 60

R
Ramachandran, 5
Rittle-Johnson, 12, 94

S
Saylor, 82
Schuele, 21, 25, 32, 34, 38, 80
Southard-Smith, 43
Sweatt, 48

T
Tharpe, 81
Troseth, 63

W
Walker, 3
Wallace, 53, 54, 66, 72
Woynaroski, 2, 13, 17, 22, 67

Y
Yoder, 10, 44, 65, 75
Keyword Index by Poster Number

5
5ht2c, 30

A
Adaptability, 69
Adolescents, 16
Adult siblings, 7
Affect, 75
Anhedonia, 23
Antiepileptic drugs, 6
Anxiety, 50
Athlete, 8
Auditory processing, 5, 68, 88
Augmentative and alternative communication, 62
Autism spectrum disorder, 2, 10, 17, 22, 23, 24, 37, 44, 46, 47, 51, 55, 65, 67, 74, 75, 79, 90
Automated vocal analysis, 44
Autonomic nervous system, 50

B
Bias to speech, 88
Body mapping of emotions, 28
Brain development, 52
Brain-behavior correlations, 60

C
CaMKII, 42, 57
Cancer, 76
Challenging behavior, 93
Child language, 80
Children, 16, 93
Classroom intervention, 93
Classrooms, 11
Cognition, 78
Cognitive and linguistic predictors, 33
Communication development, 2
Comorbidity, 23
Comprehension, 56
Congenital disorders of glycosylation, 39
Conjunction clause comprehension, 38
Context, 82

D
Decision making, 53
Dendritic spines, 41
Development, 1, 92
Digit processing, 60
Disabilities, 7
Disease modeling, 77
Dopamine, 40, 49
Down syndrome, 25, 32, 62
DRG, 84

E
Early childhood, 59
Early intervention, 75
Early language, 11
EEG, 51, 54 66, 72
Embodied emotions, 83
Embodiment, 8, 28
Emotion perception, 29
Enteric nervous system, 43
Epilepsy, 6
Event knowledge, 38
Evidence-based practice, 21
Executive functions, 64
Eye gaze, 67
Eye tracking, 13

F
Facial affect, 74
fMRI, 4
Focus group, 16
Functional abdominal pain, 3
Functional brain imaging, 95

G
GABAA receptor, 6
GABAergic interneurons, 77
Glutamate, 31
Grain size, 87
Group contingency, 59

H
Health and wellbeing, 46
Health care disparities, 70
Hippocampus, 9
Human disease models, 39
Human intestine, 43
Huntington's disease, 36, 58, 91

I
IDD Toolkit, 70
Inclusion, 35
Infants, 89
 Intellectual and developmental disabilities, 35
Interneuron, 92
Interoception, 15
Intervention, 20, 22, 86

J
Jedi, 84

K
KCC2, 92

L
Language, 1, 9, 20, 21, 24, 34, 62, 65, 67, 80, 81
Laser capture microdissection, 43
Learning, 82
Learning disabilities, 56
Left vOT, 87
Listening comprehension, 64
Literacy, 32, 52
Loneliness, 26
Longitudinal, 73

M
Major depressive disorder, 31
Manganese, 91
Mathematics development, 12, 94
Measurement systems, 11
MECP2 duplication syndrome, 85
Media, 63
Memory, 9
Meta-analysis, 17, 79
Metabotropic glutamate receptor 3, 85
Metrabotropic, 42
MGlu3, 78
MGlu4, 27
MGlu7, 18, 45
Microglia, 41
Motor behaviors, 59
Multiple/severe disabilities, 59
Multisensory, 17, 53, 54, 66, 72
Muscarinic receptor, 48

N
Narrative skills, 25
Naturalistic intervention, 79
Neurodegeneration, 19
Neuroimaging, 15
Neurotransmission, 71
Noise-induced hearing loss, 5
Nonhuman primates, 5
Novel target, 48

O
Object exploration, 89
Orbitofrontal cortex, 49
Oscillation, 72
Oxidative stress, 14

P
Palliative, 76
Parent input, 10, 80
Parent input
Parent-child engagement, 2, 3, 12
Patterned skills, 12, 94
PCA, 28
Pediatric, 76
Pediatric hearing loss, 81
Pediatric primary care, 55
Pediatric psychology, 3
Peri-personal space, 54
Peripheral nervous system, 19
Pharmacology, 36
Phonological awareness, 32, 87
Pitt Hopkins syndrome, 48
Prefrontal cortex, 31, 49
Prelinguistic vocalizations, 74
Primates, 68
Prosimian evolution, 68
Prosocial, 63
Protein-protein interactions, 42
PSD, 57
PTSD, 4

R
Reading, 25, 33, 34, 38, 56, 86
Receptor dimerization, 27
Remote microphone systems, 81
Repetitive behavior, 40, 69
Respiratory sinus arrhythmia, 61
Rett syndrome, 85
RNA, 27, 30, 91
Robotics, 90

S
Salience, 51
Schizophrenia, 26, 29, 41, 83
Schwann cell, 19
Science, technology, engineering, and math (STEM), 35
Self-determination, 46
Sensory, 15, 95
Sensory feedback, 69
Sensory seeking, 22
Serotonin, 30
Shank3, 57
Social communication, 24
Social interaction, 50
Social skills intervention, 29
Socioeconomic status, 52
Socio-emotional, 63
Somatosensory cortex, 68
Spatial skills, 94
Special education, 47
Speech-language, 21, 66, 73, 88
Stability, 13
Stem cells, 77, 90
Sticky mittens training, 89
Stress, 83
Striatum, 40
Struggling reader, 33
Stuttering, 61, 73
Synaptic plasticity, 78
Synaptic vesicle, 71

T
Telehealth, 70
Temporal correlation, 53

V
Validity, 13
Verbs, 10
Virtual reality, 26
Visual, 68
Vocalizations, 37, 44, 65

W
Word reading, 64, 82

Z
Zebrafish, 39
SESSION 1
(Names in bold indicate Poster Abstract Competition winners)

<table>
<thead>
<tr>
<th>Poster</th>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aboud, Katherine</td>
<td>Early classroom exposure to expository passages predicts neurodevelopmental trajectory of comprehension networks</td>
</tr>
<tr>
<td>2</td>
<td>Bourn, Angela</td>
<td>Psychosocial Parent Characteristics in a Sample of Pediatric Patients with Functional Abdominal Pain</td>
</tr>
<tr>
<td>3</td>
<td>Burton, Jane</td>
<td>Perceptual Auditory Filters in Noise Exposed Macaque Monkeys with Permanent Hearing Loss</td>
</tr>
<tr>
<td>4</td>
<td>Casale, Ellen</td>
<td>Here-to-There: Correlates and Factors of Adult Siblings’ Preparation for Caregiving Roles</td>
</tr>
<tr>
<td>5</td>
<td>Covington, Natalie</td>
<td>Repetition Does Not Improve Pronoun Comprehension in Amnesia</td>
</tr>
<tr>
<td>6</td>
<td>Cunningham, Jennifer</td>
<td>Comparison Of Measurement Systems For Collecting Teacher Language Data In Inclusive Early Childhood Settings</td>
</tr>
<tr>
<td>7</td>
<td>Dunham, Kacie</td>
<td>Methods of Infant Eye Gaze Analysis and Predicting Language and Sensory Development</td>
</tr>
<tr>
<td>8</td>
<td>Fiailla, Michelle</td>
<td>Neural correlates of interception in autism spectrum disorder</td>
</tr>
<tr>
<td>9</td>
<td>Feldman, Jacob</td>
<td>Audiovisual Multisensory Integration in Individuals with Autism Spectrum Disorder: A Meta-Analysis</td>
</tr>
<tr>
<td>10</td>
<td>Folli, Rose</td>
<td>Deletion of p75 neurotrophin receptor in Schwann cells results in peripheral neurodegeneration</td>
</tr>
<tr>
<td>11</td>
<td>Gogol, Madison</td>
<td>Language Sample Analysis: Identifying and Addressing the Research to Practice Gap</td>
</tr>
<tr>
<td>12</td>
<td>Han, Gloria</td>
<td>Social anhedonia as a vulnerability factor for depression in adults with autism spectrum disorder</td>
</tr>
<tr>
<td>13</td>
<td>Hessling, Alison</td>
<td>Spoken fictional narrative and literacy skills of children with Down syndrome</td>
</tr>
<tr>
<td>14</td>
<td>Hofmann, Chris</td>
<td>Functional consequences of RNA editing on mGlu4 dimerization</td>
</tr>
<tr>
<td>15</td>
<td>Ichinose, Megan</td>
<td>Emotion recognition improvements in schizophrenia following a novel computerized social-training intervention</td>
</tr>
<tr>
<td>16</td>
<td>Shumate, Kayla</td>
<td>The Physiological Role of CAPS1 RNA Editing</td>
</tr>
<tr>
<td>17</td>
<td>Joffe, Max</td>
<td>Modulation of mGlu3 function in a rodent model of Major depressive disorder</td>
</tr>
<tr>
<td>18</td>
<td>Kim, Wooliya</td>
<td>Cognitive and linguistic predictors of reading comprehension in elementary grades</td>
</tr>
<tr>
<td>19</td>
<td>Kuntz, Emily</td>
<td>Inclusive STEM Classroom Experiences for Students with Autism and Other Developmental Disabilities</td>
</tr>
<tr>
<td>20</td>
<td>Leofsky, Abbie</td>
<td>Examining the relationship between motor abilities and prelinguistic vocalizations in preverbal children with autism</td>
</tr>
<tr>
<td>21</td>
<td>Luderman, Lauryn</td>
<td>Abnormal craniofacial and neural development in glycosyltransferase mutant zebrafish recapitulates CDG-ij patient phenotypes</td>
</tr>
<tr>
<td>22</td>
<td>Mallya, Allyson</td>
<td>Microglial pruning of synapses in the prefrontal cortex during adolescence</td>
</tr>
<tr>
<td>23</td>
<td>May-Zhang, Aaron</td>
<td>Optimization of Laser-Capture Microdissection for Isolation of Enteric Ganglia from Fresh-Frozen Human Tissue</td>
</tr>
<tr>
<td>24</td>
<td>McDonald, Annalise</td>
<td>Characterization of seizure activity and sleep-wake architecture in mGlu7 knockout mice by Electroencephalography (EEG)</td>
</tr>
<tr>
<td>25</td>
<td>McQueen, Chelsea</td>
<td>Statewide Implementation of an Experiential Training Paradigm to Support Educators through In-Person and Teleconferenced Training, Coaching, and Mentorship</td>
</tr>
<tr>
<td>26</td>
<td>Murphy, Monika</td>
<td>Characterization of afferents to the orbitofrontal cortex in the rat</td>
</tr>
<tr>
<td>27</td>
<td>Nagabhushan Kalburgi, Sahana</td>
<td>Quantitative Measurement of Social Motivation in Adults with Autism Spectrum Disorder using Electroencephalogram</td>
</tr>
<tr>
<td>28</td>
<td>Nidiffer, Aaron</td>
<td>Audiovisual stimulus correlation drives multisensory perceptual decisions via changes in evidence accumulation</td>
</tr>
<tr>
<td>29</td>
<td>Pasternak, Anna</td>
<td>A Pilot Model for Increasing Access to Services: Embedding ASD Diagnosis within the Medical Home</td>
</tr>
<tr>
<td>30</td>
<td>Perfitt, Tyler</td>
<td>Direct interaction between ASD-linked proteins Shank3 and CaMKII</td>
</tr>
<tr>
<td>31</td>
<td>Pokorski, Elizabeth</td>
<td>Assessing the Differential Effects of Known and Mystery Rewards in a Preschool-based Group Contingency</td>
</tr>
<tr>
<td>32</td>
<td>Pratt, Dillon</td>
<td>Respiratory sinus arrhythmia and developmental stuttering</td>
</tr>
<tr>
<td>33</td>
<td>Roach, Kathryn</td>
<td>Impact of Prosocial Media on Children’s Socio-Emotional Development</td>
</tr>
<tr>
<td>34</td>
<td>Salomon, Tara</td>
<td>Association Between Vocal Communication with Canonical Syllables and Expressive Language in Young Children with ASD</td>
</tr>
<tr>
<td>35</td>
<td>Buford, Alex</td>
<td>Psychophysiological responses to unpredictable verses predictable threat in PTSD</td>
</tr>
<tr>
<td>36</td>
<td>Shafer, Robin</td>
<td>Concurrent changes in behavioral and neural complexity associated with sensorimotor integration: Implications for understanding stereotyped behaviors in autism</td>
</tr>
<tr>
<td>37</td>
<td>Singer, Cara</td>
<td>The development of of speech-language dissociations and stuttering chronicity</td>
</tr>
<tr>
<td>38</td>
<td>Smilansky, Hannah</td>
<td>Early Intervention and Affect in Children with Autism</td>
</tr>
<tr>
<td>39</td>
<td>Snow, John</td>
<td>An iPSC-Derived GABAergic Interneuron Model for Investigating ATP1A3 Mutations in Alternating Hemiplegia of Childhood</td>
</tr>
<tr>
<td>40</td>
<td>Su, Pumpki Lei</td>
<td>Naturalistic Interventions for Children with Autism Spectrum Disorder: A Meta-Analysis</td>
</tr>
<tr>
<td>41</td>
<td>Thompson, Emily</td>
<td>Remote Microphone Use in the Homes of Children with Hearing Loss: Impact on Child-Directed Speech</td>
</tr>
<tr>
<td>42</td>
<td>Torregrossa, Lénie</td>
<td>Stress and embodied emotions along the schizophrenia spectrum</td>
</tr>
<tr>
<td>43</td>
<td>Vermudez, Sheryl Anne</td>
<td>Metabotropic glutamate receptor 3 as a therapeutic target for MECP2-associated disorders</td>
</tr>
<tr>
<td>44</td>
<td>Wang, Jin</td>
<td>Reading skill affects the specialization of left ventral occipitotemporal cortex during phonological awareness task in 5-6-year-old children</td>
</tr>
<tr>
<td>45</td>
<td>Wiesen, Sarah</td>
<td>Effects of Sticky Mittens Training on Infants’ Exploration Behaviors in Various Postures</td>
</tr>
<tr>
<td>46</td>
<td>Yang, Kevin</td>
<td>The Transcriptional Profile of Prodromal HD Mice Exposed to Manganese: A Bioinformatics Approach</td>
</tr>
<tr>
<td>47</td>
<td>Zimmerman, Kathleen</td>
<td>Investigating the Effectiveness of Social Stories and Visual Supports Interventions for Children At-risk for Emotional and Behavioral Disorders</td>
</tr>
<tr>
<td>48</td>
<td>Zoltowski, Alisa</td>
<td>Differences in temporal profile of brain responses by pleasantness of somatosensory stimulation in individuals with ASD</td>
</tr>
<tr>
<td>Poster</td>
<td>Name</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>Augustine, Ashley</td>
<td>Stability and Validity of Parent-Child Engagement in Infants and Toddlers at High Risk of Autism Spectrum Disorder</td>
</tr>
<tr>
<td>4</td>
<td>Santapuram, Pooja</td>
<td>Eye Gaze Patterns Correlate with Vocal Complexity and Language Development in Infants at High- and Low-Risk for Autism Spectrum Disorder</td>
</tr>
<tr>
<td>6</td>
<td>Cai, Kefu</td>
<td>Tailored Therapeutic Strategies for Genetic Epilepsies with Impaired GABAergic Signaling in Pre-Clinical Mouse Models</td>
</tr>
<tr>
<td>8</td>
<td>Chon, Eun Sol</td>
<td>Individual Differences in Bodily Mapping of Emotions: The Exceptional Case of Athletes</td>
</tr>
<tr>
<td>10</td>
<td>Crandall, Madison</td>
<td>An Exploratory Analysis of the Relationship Between Parent Verb Input and Verb Expressive Vocabulary in Children with Autism Spectrum Disorder</td>
</tr>
<tr>
<td>12</td>
<td>Douglas, Ashli-Ann</td>
<td>Parents’ Support of Early Numeracy and Patterning Skills</td>
</tr>
<tr>
<td>14</td>
<td>Eckman, Jared</td>
<td>Lifetime dietary antioxidant status and disease drive post mortem changes in neural antioxidant and oxidative stress levels</td>
</tr>
<tr>
<td>16</td>
<td>Feldman, Amanda</td>
<td>Leading focus groups with children and adolescents: An investigation of effective methods</td>
</tr>
<tr>
<td>18</td>
<td>Fisher, Nicole</td>
<td>mGlu7 dysfunction in neurodevelopmental disorders</td>
</tr>
<tr>
<td>20</td>
<td>Fuller, Elizabeth</td>
<td>The Effects of Word Repetition and Word Diversity on Language Production for Children with Profound Language Impairments</td>
</tr>
<tr>
<td>22</td>
<td>Golden, Alexandra</td>
<td>Targeted Early Intervention on Sensory Function in High Risk Infants: A Proposed Study Utilizing Single Case Research Design</td>
</tr>
<tr>
<td>24</td>
<td>Heidlage, Jodi</td>
<td>Examining Expressive Language Benchmarks in Young Minimally Verbal Children with Autism</td>
</tr>
<tr>
<td>26</td>
<td>Adery, Laura Hieber</td>
<td>Effects of a Virtual Reality Social Training Intervention on Loneliness and Social Cognition in Patients with Schizophrenia</td>
</tr>
<tr>
<td>28</td>
<td>Hong, Seok Jin</td>
<td>The Structure of Embodied Emotions in Schizophrenia</td>
</tr>
<tr>
<td>32</td>
<td>Jones, Ragan</td>
<td>An Evaluation of Phonological Awareness Intervention with Down Syndrome Children</td>
</tr>
<tr>
<td>34</td>
<td>Krimm, Hannah</td>
<td>Patterns of Reading Impairments in Children with SLI</td>
</tr>
<tr>
<td>36</td>
<td>Lavery, Madigan</td>
<td>M4 Receptor Activation Normalizes Dopaminergic Signaling in Huntington's Disease Mouse Models</td>
</tr>
<tr>
<td>38</td>
<td>Liang, Shih-Yuan</td>
<td>Early Emerging, Slow Mapping? Comprehension of Conjunction Clauses that Involve Unfamiliar Event Ordering in Different Types of Readers</td>
</tr>
<tr>
<td>40</td>
<td>Mahmood, Mohammad</td>
<td>Region Specific Dysregulation of Dopaminergic Signaling in SAPAP3 Knock out Mice Displaying Excessive Over-Grooming</td>
</tr>
<tr>
<td>42</td>
<td>Marks, Christian</td>
<td>The Role of CaMKII in mGlu5 Signaling</td>
</tr>
<tr>
<td>44</td>
<td>McDaniel, Jena</td>
<td>Can an Automated Measure - Child Reciprocal Vocal Contingency - Predict Language Outcomes for Young Children with Autism Spectrum Disorder?</td>
</tr>
<tr>
<td>46</td>
<td>McDonald, T A</td>
<td>Spectrum Pathways Goal Attainment Program: Relationships between Identity and Self-Efficacy, Problem Solving, and Psychological Health</td>
</tr>
<tr>
<td>48</td>
<td>Moore, Annah</td>
<td>Muscarinic Acetylcholine Receptor 4 (M4) as a Novel Target for Pitt Hopkins Syndrome</td>
</tr>
<tr>
<td>50</td>
<td>Muscatello, Rachael</td>
<td>Autonomic nervous system dysregulation during social interaction in children with autism spectrum disorder</td>
</tr>
<tr>
<td>52</td>
<td>Nguyen, Tin</td>
<td>Brain Structural Evidence of Literacy Environmental Impacts on Cognitive Abilities within Low Socioeconomic Group</td>
</tr>
<tr>
<td>54</td>
<td>Noel, Jean-Paul</td>
<td>Increased Neural Strength and Reliability to Audiovisual Stimuli at the Boundary of Peri-Personal Space</td>
</tr>
<tr>
<td>56</td>
<td>Patton, Sam</td>
<td>Investigating moderators of working memory performance for struggling readers in elementary grades</td>
</tr>
<tr>
<td>58</td>
<td>Pfalzer, Anna</td>
<td>Alterations in Arginine and Cholesterol Metabolism are rescued with Manganese exposure in a Mouse Model of Huntington's Disease</td>
</tr>
<tr>
<td>60</td>
<td>Pollack, Courtney</td>
<td>Neurocognitive mechanisms of digit processing and their relationship with mathematics competence</td>
</tr>
<tr>
<td>62</td>
<td>Quinn, Emily Dayle</td>
<td>Using Aided Augmentative and Alternative Communication (AAC) Modeling During Small Group Instruction for Young Children with Down Syndrome</td>
</tr>
<tr>
<td>64</td>
<td>Saha, Neena</td>
<td>Differential Contributions of Specific Executive Functions to Word-reading versus Listening Comprehension</td>
</tr>
<tr>
<td>66</td>
<td>Samuel, Aster</td>
<td>Asynchronous Audiospatial Speech Requires Greater Neural Processing</td>
</tr>
<tr>
<td>68</td>
<td>Saraf, Mansi</td>
<td>Architectonic feature and relative locations of primary sensory and related areas of neocortex in mouse lemur</td>
</tr>
<tr>
<td>70</td>
<td>Shouse, Janet</td>
<td>Developing and Implementing Case-Based Telehealth Training for Primary Care Providers of Adults with IDD</td>
</tr>
<tr>
<td>71</td>
<td>Jinnah, Hussain</td>
<td>RNA Editing-Mediated Regulation of Serotonin 2C Receptor Expression</td>
</tr>
<tr>
<td>72</td>
<td>Simon, David</td>
<td>Theta Power and Phase Coherence Support Multisensory Temporal Processing</td>
</tr>
<tr>
<td>74</td>
<td>Slabo, Kathryn</td>
<td>Determining How Preverbal Children with Autism Spectrum Disorder Combine Facial Affect and Prelinguistic Vocalizations</td>
</tr>
<tr>
<td>76</td>
<td>Smith, Lauren</td>
<td>Parent and Child Preferences and Styles of Communication about Cancer Diagnoses and Treatment</td>
</tr>
<tr>
<td>78</td>
<td>Stansley, Branden</td>
<td>Meta-modulation of mGlu5 by mGlu3 during hippocampal dependent synaptic plasticity and behavior</td>
</tr>
<tr>
<td>80</td>
<td>Teller, Laurel</td>
<td>Preschoolers with and without a History of Language Delay: Complex Syntax in Maternal Language Input at Home</td>
</tr>
<tr>
<td>82</td>
<td>Tiemannhauer, Nicholas</td>
<td>Context dependencies in word learning?</td>
</tr>
<tr>
<td>84</td>
<td>Trevisan, Alexandra</td>
<td>The role of Jedi in the development and function of the somatosensory nervous system</td>
</tr>
<tr>
<td>86</td>
<td>Walsh, Meagan</td>
<td>Developing a Comprehension Interventions for Struggling 3rd Grade Readers: A Pilot Study</td>
</tr>
<tr>
<td>88</td>
<td>Whitten, Allison</td>
<td>Investigating Neural Bias to Speech Using Auditory Event-Related Potentials in Children</td>
</tr>
<tr>
<td>90</td>
<td>Wright, John</td>
<td>Using Robotics to Increase Academic & Social Skills of Students with Autism</td>
</tr>
<tr>
<td>92</td>
<td>Zavala, Kirill</td>
<td>Excitatory to Inhibitory Transition in GABAergic Currents Guides Circuit Formation of Cortical Interneurons</td>
</tr>
<tr>
<td>94</td>
<td>Zipper, Erica</td>
<td>More than just numbers: Examining how pattern and spatial skills predict preschoolers' math knowledge</td>
</tr>
</tbody>
</table>
Back of Room

<table>
<thead>
<tr>
<th>1-Aboud</th>
<th>3-Bourn</th>
<th>5-Burton</th>
<th>7-Casale</th>
<th>9-Covington</th>
<th>11-Cunningham</th>
<th>13-Dunham</th>
<th>15-Faila</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Augustine</td>
<td>4-Santapura</td>
<td>6-Cai</td>
<td>8-Chon</td>
<td>10-Crandall</td>
<td>12-Douglas</td>
<td>14-Eckman</td>
<td>16-A. Feldman</td>
</tr>
<tr>
<td>18-Fisher</td>
<td>20-Fuller</td>
<td>22-Golden</td>
<td>24-Heidlage</td>
<td>26-Adery</td>
<td>28-Hong</td>
<td>30-Shumate</td>
<td>32-Jones</td>
</tr>
<tr>
<td>33-Kim</td>
<td>35-Kuntz</td>
<td>37-Leofsky</td>
<td>39-Luderman</td>
<td>41-Mallya</td>
<td>43-May-Zhang</td>
<td>45-A. McDonald</td>
<td>47-McQueen</td>
</tr>
<tr>
<td>49-Murphy</td>
<td>51-Nagabhushan Kalburgi</td>
<td>53-Nidiffer</td>
<td>55-Pasternak</td>
<td>57-Perfitt</td>
<td>59-Pokorski</td>
<td>61-Pruett</td>
<td>63-Roach</td>
</tr>
<tr>
<td>50-Muscatello</td>
<td>52-Nguyen</td>
<td>54-Noel</td>
<td>56-Patton</td>
<td>58-Pfalzer</td>
<td>60-Pollack</td>
<td>62-Quinn</td>
<td>64-Saha</td>
</tr>
<tr>
<td>65-Salomon</td>
<td>67-Buford</td>
<td>69-Shafer</td>
<td>71-Jinnah</td>
<td>73-Singer</td>
<td>75-Smilansky</td>
<td>77-Snow</td>
<td>79-Su</td>
</tr>
<tr>
<td>66-Samuel</td>
<td>68-Saraf</td>
<td>70-Showe</td>
<td>72-Simon</td>
<td>74-Slaboch</td>
<td>76-Smith</td>
<td>78-Stansley</td>
<td>80-Teller</td>
</tr>
<tr>
<td>81-Thompson</td>
<td>83-Torregrassa</td>
<td>85-Vermudez</td>
<td>87-Wang</td>
<td>89-Wiesen</td>
<td>91-Yang</td>
<td>93-Zimmerman</td>
<td>95-Zoltowski</td>
</tr>
</tbody>
</table>
| 82-Tippenhauer | 84-Trevisan | 86-Walsh | 88-Whitten | 90-Wright | 92-Zavalin | 94-Zippert |}

Front of Room